FAILURE ANALYSIS OF FLUOROPOLYMER PARTS – science not art

Sina Ebnesajjad, PhD, President
FluoroConsultants Group, LLC

© www.FluoroConsultants.com
What you will hear in this presentation

• Brief introduction
• Examples of parts
• Part exposure and failure
• A methodology for failure analysis
• State-of-art analytic methods
 – Useful techniques
 – Expected data
 – Information obtained from data
• Example of failure
 – Application of methodology
 – Data interpretation
 – Failure scenario
INTRODUCTION

• Parts fail from time to time in chemical processing and other plants – *fact of life*

• Fluoropolymer parts last longer than most other materials

• Important to determine cause of failure because of:
 – Process hazards
 – Process up-time
 – Future improvement
EXAMPLES OF PARTS
Fluoropolymer Lined Pipe

Courtesy Crane Resistoflex Corp.

© www.FluoroConsultants.com
PTFE Lined Process Vessel
PFA Parts
PTFE Lined Flexible Hose
Part Exposure and Failure

• Elements of Part Exposure
 – Mechanical
 • Stress
 • Pressure
 – Chemical
 • Organic
 • Inorganic

• Factors Intensifying Exposure
 – Temperature
 – Time

• Consequences of Routine Part Failure*
 – Emission
 – Corrosion

*Catastrophic failure is outside the scope of this presentation
VISUAL EVIDENCE OF FAILURE

<table>
<thead>
<tr>
<th>DEFECT</th>
<th>POSSIBLE CAUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWELLING</td>
<td>SORPTION, PERMEATION</td>
</tr>
<tr>
<td>BLISTERING</td>
<td>PERMEATION, LOCALIZED POLYMERIZATION</td>
</tr>
<tr>
<td>DISCOLORATION</td>
<td>DEGRADATION, LOCALIZED POLYMERIZATION</td>
</tr>
<tr>
<td>CRACKING</td>
<td>STRESS, ENVIRONMENTAL STRESS CRACKING</td>
</tr>
<tr>
<td>DEFORMATION</td>
<td>CREEP (COLD FLOW)</td>
</tr>
<tr>
<td>GENERAL DEGRADATION</td>
<td>OXIDATION, CHEMICAL ATTACK</td>
</tr>
</tbody>
</table>

© www.FluoroConsultants.com
A Methodology for Failure Analysis

VISUAL

MICROSCOPIC

FAILURE CLASSIFICATION

SELECTION OF ANALYTIC TECHNIQUES AND ANALYSIS

MEASUREMENT AND ANALYSIS

DATA ANALYSIS

ROOT CAUSE DETERMINATION

© www.FluoroConsultants.com
INFORMATION LIST*

• Service fluids and chemistry (design and excursions)
• Temperature, pressure and flow rate
• Material of construction
• Design details, welds etc.
• Circumstances and nature of failure: leaks, rupture
• Manufacturer of parts
• Existing industry, MIL or company standards
• Problem history, if a repeat

* Required prior to analysis
IMPORTANT ANALYTIC METHODS

- Optical Microscopy (OM)
- Physical Properties
 - Specific Gravity, Elongation, Tensile Strength,…
- (Environmental) Scanning/Transmission Electron Microscopy (SEM, TEM)
 - Energy Dispersive X-ray (EDX)
- Thermal Analysis (DSC, TGA, DMA, TMA)
 - Heat of Fusion, Melting Point, Degradation Temp.,...
- Infrared Spectroscopy (FTIR, ATR)
- Atomic Absorption Spectroscopy (AAS)
- Electron Spectroscopy for Chemical Analysis (ESCA)
- Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS)
- Atomic Force Microscopy (AFM)
- Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS)
<table>
<thead>
<tr>
<th>Analysis Method</th>
<th>Sampling Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared Spectroscopy (IR)</td>
<td><2 μm</td>
</tr>
<tr>
<td>Energy Dispersive X-ray (EDX)</td>
<td><5,000 Å</td>
</tr>
<tr>
<td>Rutherford Back Scattering (RBS)</td>
<td><400 Å</td>
</tr>
<tr>
<td>Electron Spectroscopy for Chemical Analysis (ESCA) and Auger</td>
<td><40 Å</td>
</tr>
<tr>
<td>Second Ion Mass Spectroscopy (SIMS)</td>
<td><4 Å</td>
</tr>
<tr>
<td>Ion Scattering Spectroscopy (ISS)</td>
<td><2 Å</td>
</tr>
<tr>
<td>Test Method</td>
<td>Information Obtained from Data</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>OM</td>
<td>Appearance</td>
</tr>
<tr>
<td>SEM/TEM</td>
<td>Sub-microscopic Structure/Topography</td>
</tr>
<tr>
<td>EDX</td>
<td>Qualitative Elemental Analysis</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>Material Degradation</td>
</tr>
<tr>
<td>Thermal Analysis</td>
<td>Properties, Processing, Degradation</td>
</tr>
<tr>
<td>FTIR</td>
<td>Material Identification</td>
</tr>
<tr>
<td>AAS</td>
<td>Metal Analysis</td>
</tr>
<tr>
<td>ESCA</td>
<td>Surface Chemical Composition (except for hydrogen)</td>
</tr>
<tr>
<td>TOF-SIMS</td>
<td>Composition vs Depth</td>
</tr>
<tr>
<td>AFM</td>
<td>Surface Roughness</td>
</tr>
</tbody>
</table>
EXAMPLE OF FAILURE ANALYSIS
Leaky Fluorine Gas Hose

- **Service**: Fluorine gas
- **Hose Assembly**: nipple, collar, hose and steel braid
- **Nature of Failure**: leak
- **Location of Failure**: in PTFE tube near the collar

![Image of hose assembly showing failure point and components](image-url)
Visual Observations

• Braid at the failure point was extremely discolored

• A small spot on PTFE liner was observed after removal of braid
Braid Microscopy (OM, SEM, EDX)

- Internal and external braid surfaces discolored \(\rightarrow\) *abnormal*
 - evidence of intense heat exposure
- Normal weave pattern in the braid
- No “stray” wire that may have punctured tube
- Stainless Steel braid composition: Fe, Ni, Cr and Mo \(\rightarrow\) *normal*
PTFE Liner Microscopy (OM, SEM)

- Light impression of braiding in the tube exterior → normal
- A relatively large void/crack found in the failure area → abnormal
- SEM showed presence of voids and primary PTFE particles and fibrils → abnormal
 - Suggesting processing problem of PTFE liner (Incomplete Sintering)
PTFE Liner Crack
(10,000 X)
Tube Composition

FTIR

• Determined tubing was PTFE \rightarrow normal
• PPVE comonomer was also detected \rightarrow normal

EDX

• Only F and C found in failure area \rightarrow normal
SURFACE CHEMISTRY (ESCA)

Polytetrafluoroethylene -CF₂-CF₂-

- Ideal $F:C$ Ratio = 2 (actual 1.8-1.9) and $O:C$ Ratio = 0
- Defect area $F:C$ Ratio = 0.9 and $O:C$ Ratio = 0.09
- Adjacent Area $F:C$ Ratio = 1.3 and $O:C$ Ratio = 0.05
- Conclusion: loss of F due to oxidation at failure point
Differential Scanning Calorimetry (DSC)

• **Adjacent area**
 – single peak, melting point = 321°C (normally 327°C)
 – first heat = 22.6 J/g (normally <30 J/g)

• **Defect area**
 – double peak at 309°C and 318°C
 – first heat 30.9 J/g + 12.5 J/g = 43.4 J/g

• **Conclusion**: severe degradation at failure point
A likely scenario for the failure

- A contaminant was probably trapped inside tube wall where the void has been formed.
- Fluorine diffuses over time and reaches the contaminant.
- Exothermic reaction of fluorine with contaminant takes place (most materials react with fluorine) – *it disappears*.
- A hot spot develops at leak area.
- Intense heat melts the PTFE and creates a leakage point.
- PTFE is severely degraded at failure point, thus has lower molecular weight → depressed melting point.
- PTFE loses fluorine because of intense heat exposure.
- O_2 replaces some of F_2 lost from PTFE.
Modeling Fluoropolymer Parts

Modeling Fluoropolymer Parts

• Advanced finite element techniques are available for modeling fluoropolymer
 – dramatic improvements made in modeling accuracies

• Models allow designers and engineers to advance sophistication of component designs
 – understand where problems may develop
Finite Element Modeling

- Geometry and BC
- Loading Specification
- Material Representation

Finite Element Modeling

- The results from FEA are only as accurate as the input values

Ref Jorgen Bergstrom, Ph.D., Veryst Engineering, LLC, Needham, MA
Brun Hilbert, Ph.D., P.E., Exponent Inc., Natick, MA

© www.FluoroConsultants.com
<table>
<thead>
<tr>
<th>Technique</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear elastic solutions from stress analysis handbooks</td>
<td>Relatively quick with validated results.</td>
<td>Does not account for polymer nonlinearity. May underestimate strains and stresses and under-estimate deformations. Standard geometries only.</td>
</tr>
<tr>
<td>Linear viscoelastic solutions from stress analysis handbooks</td>
<td>Relatively quick.</td>
<td>Small strain effects only. Simple, accepted material laws. Standard geometries only. Some material testing may be required.</td>
</tr>
<tr>
<td>Analytical viscoplastic solutions</td>
<td>More accurate than elastic or viscoelastic for simple geometries.</td>
<td>No standard solutions available. Requires some numerical analysis given complexity of material model. Some material testing may be required.</td>
</tr>
<tr>
<td>Linear elastic finite element analysis</td>
<td>Accommodates complex geometries. Rapid analysis possible.</td>
<td>Does not account for FP nonlinearity. May underestimate strains and stresses and under-estimate deformations. Good only for small strains.</td>
</tr>
<tr>
<td>Finite element analysis with polymer-specific material or constitutive laws</td>
<td>Accommodates complex geometries. Can handle nonlinearity in material behavior and large strains. Rapid analysis possible. Can predict very complicated polymer behavior, including filled polymers and complex temperature-loading histories.</td>
<td>Requires the most computing power. Requires the most material testing.</td>
</tr>
</tbody>
</table>
Figure 11.8 Axisymmetric representation of the hose showing the axial load (F) and the internal pressure (P).
Figure 11.10 Contours of maximum principal stress in the hose at 20°C, $P = 0.6$ MPa, $F = 280$ N, after a loading time of 1 min.
Threaded Connection Simulation

Ref Jorgen Bergstrom, Ph.D., Veryst Engineering, LLC, Needham, MA
Brun Hilbert, Ph.D., P.E., Exponent Inc., Natick, MA

© www.FluoroConsultants.com
Threaded Connection Simulation

What is the pressure between the Teflon seal and the steel pipes at different temperature and times?

Ref Jorgen Bergstrom, Ph.D., Veryst Engineering, LLC, Needham, MA
Brun Hilbert, Ph.D., P.E., Exponent Inc., Natick, MA
Threaded Connection Simulation

Ref Jorgen Bergstrom, Ph.D., Veryst Engineering, LLC, Needham, MA

Brun Hilbert, Ph.D., P.E., Exponent Inc., Natick, MA
Threaded Connection Simulation

Ref Jorgen Bergstrom, Ph.D., Veryst Engineering, LLC, Needham, MA
Brun Hilbert, Ph.D., P.E., Exponent Inc., Natick, MA
Conclusions

• Methodology and advanced techniques are available for failure analysis of fluoropolymer parts using engineering/scientific principles.

• Stress development in fluoropolymer parts can be studied by modeling to understand where problems may arise and enhance component design.